Educator Compensation Reform

TIF Challenges in Education Information Systems and Knowledge Management

Chris Thorn

Jeff Watson

Sara Kraemer

Jeff Watson

Sara Kraemer

Wisconsin Center for Education Research University of Wisconsin-Madison

Teacher Incentive Fund Grantee Meeting June 8 & 9, 2009 Bethesda, MD

Overview

- Decision support needs of TIF grantees
- Characteristics of quality data
- Examples of data quality challenges and some solutions for overcoming them

TIF Decision Support User Needs

- Transparency
- Validity of metrics
- Accuracy and replication
- Responsiveness and timeliness
- Granularity
- Interoperability

What are Quality Data?

- Accurate Are the data right?
- Granular Are the data detailed enough?
- Valid Do the data represent reality?
- Integrated Can data from multiple systems be connected?
- Relational How does the organization of data affect data utility?
- Reducible How can districts reduce data burden into meaningful analytics?
- Actionable Do data consumers know what to do?

Challenges to Success in Decision Support

- Challenges can co-exist and compound each other
- Have social/organizational as well as technical roots
- Should be prioritized given grantees' constraints, priorities, and theory of action

Example 1: Connecting Teacher Data From SIS and HR

- Teachers in HR system did not match teachers in SIS (≈70% matched)
- Context:
 - Human Resources system (PeopleSoft) creates persistent and unique IDs (aka empIIDs)
 - SIS (eSIS) creates non-persistent but unique IDs (aka TeacherIDs)
 - School staff create and manage TeacherIDs throughout the school year, but especially during scheduling periods.
 Complex workflow not well represented by SIS interface
- Challenges represented: accuracy, validity, integration

Example 1 (continued)

School staff use SIS in a way that meets local scheduling needs
 here are some actual teacher 'names':

Tch A - MRP2, Tch B - MRP1, Tch C - Sci6B, Tch D - Orchestra

- Some buildings use organizational structures that are not manageable with the data structure provided by the district
- Analyses:
 - Analyze matching patterns Where is matching best? Worst?
 - For teachers assigned a grade level in SIS, roughly 15% (≈500) cannot be matched; disproportionate number in 8th and 9th
 - For teachers with no grade level in SIS, 55% (≈1,500) cannot be matched
 - Analyze workflows that affect data quality Why is data quality compromised?
 - Create process flows for major tasks at schools such as scheduling, creating new rosters, keying teacher information

Creation of StudentTeacherLink2008grades345

Example 1 (continued)

Solutions:

- Build data quality checks for data-entry screens (e.g., leverage Oracle exception error) that use look up tables (improves integration)
- Create data quality management tools (e.g., reports, training procedures)
- Build support of stakeholders to emphasize quality – e.g., training, tech support,
- Identify true needs of schools (e.g., scheduling logistics) and develop use-cases
- Provide feedback to SIS vendor to improve underlying SIS data model

Percent of teachers with accurate HR data in SIS

Example 2: Connecting Teachers to Students

- Knowing what teachers taught what students is a critical linkage for TIF projects
- Context
 - Schools use a variety of organizational designs
 - SIS data structures for enrollment data may not capture non-traditional instructional models
 - Additional programs (e.g., after-school activities, pull-out specialists) exist
- Challenges: Validity, granularity, quality

A record of which teachers and staff taught which students during a school year.

Four Easy Questions

- What is a student?
- What is a teacher?
- What is a school?
- What is a course?

Warning: Reality Approaching

... movement between schools

... and movement within schools

... and complicated workflows

... and absence rates

... Instructional strategies like grouping, pullouts, room aides, team teaching (SAGE)

... non-traditional schools

... data errors, integration issues, SIS

Review of Student Teacher Linkages

Example 2 (continued)

- Mobility
 - Introduces multiple teachers
- Do course titles in SIS reflect true curricular content?
- Team teaching
 - Does SIS data indicate when team teaching is occurring? Who teaches what?
- Pull outs, tutoring, after-school programs (SESs) –
 - Implications for VAA control variables

Educator Compensation Reform

T_ID	E_ID	N	SG1	SG2	SG3	Size	Size	Size	Number of Schools	Number of Grades	Small	Large
			217									
####	####	34	.4			34			1	1	0	1
####	####	42	185 .5			42			1	1	0	1
####	####	2	144	144. 5		1	1		1	2	1	0
####	####	2	174 .3	174. 4		1	1		1	2	1	0
####	####	31	303	337.		30	1		2	1	1	1
####	####	4	357 .3	278. 5	357. 5	2	1	1	2	2	1	0

Educator Compensation Reform

T_ID	E_ID	N	SG1	SG2	SG3	Size	Size 2	Size	Number of Schools	Number of Grades	Small	Large
####	####	34	217 .4			34			1	1	0	1
####	####	42	185 .5			42			1	1	0	1
####	####	2	144	144. 5		1	1		1	2	1	0
####	####	2	174 .3	174. 4		1	1		1	2	1	0
####	####	31	303	337.		30	1		2	1	1	1
####	####	4	357 .3	278. 5	357. 5	2	1	1	2	2	1	0

Distribution of teachers by # of schools and # of grades taught

	4 .5	# c			
	# of Schools	1	2	3	
	1	792 158	119 71	29 28	940 257
June SPS Assess	2	45 45	11 11	1	57 57
710000	3	1 1	0	0	1
Total by # o	of Grades	838 204	130 82	30 29	998 315

Example 2 (continued)

Solutions

- Audit data accuracy in SIS use sampling, target initial analyses on grades that are easier to assess student – teacher linkages (assess quality)
- Examine capacity of SIS to track SES, team teaching, etc. (assess validity)
- Build incentives for schools to accurately record teacher of record; verify with teachers (improve validity)
 - Example: MPS requires teachers to build a course roster from a list of enrolled students. Redundant, but serves to validate the accuracy teacher / student links in SIS (improves quality through integration)
- Confirm accuracy of SIS data through phone calls and pen-andpaper questionnaires (quality and validity)

Example 3: Classifying Teachers into Categories

- Teachers often teach across grades and content areas
- Context
 - What teachers teach both math and science?
 - What teachers teach more than one grade?
 - What is a course anyways?
- Challenges: Validity, reduction, accuracy

Example 3 (continued)

- Is there such a thing as a "math" teacher?
- Analyses
 - Create case logic for sorting course numbers into content areas
 - Count number of students in each course number, break out by grade level of student

Example:

- 20% taught students within a single grade and a single content area
- 60% taught students across grades
- 10% taught students within a single grade, but in math and science courses
- 10% taught across grades and across math and science

Example 3 (continued)

Solutions

- Design an evaluation system that is aligned with the complex nature of schools, doesn't force teachers into categories, and captures the nature of teacher's jobs (improve validity)
- Mine enrollment data rather than HR data (improves accuracy, validity)
- If teachers must be categorized into a single grade or content area, then a couple of approaches might work
 - Use the number of students
 - Use the number of courses

Summary

- Each TIF project has unique IT needs and priorities
- Data quality is critical for most if not all TIF projects
- Data quality has several key components these characteristics help us understand what to do first
- Improving data quality will involve both short- and long-term solutions
- Priorities should reflect constraints, priorities, and theory of action

Contact Information

Chris Thorn <u>cathorn@wisc.edu</u>

Jeff Watson jgwatson@wisc.edu

Sara Kraemer <u>sbkraeme@wisc.edu</u>

Value-Added Analytics: VA2

http://varc.wceruw.org/